7 M

Code: 17MEMD1T2

I M.Tech - I Semester – Regular / Supplementary Examinations February 2020

MECHANICAL BEHAVIOUR OF MATERIALS (MACHINE DESIGN)

Duration: 3 hours Max Marks: 60 Answer the following questions. 1. a) Explain Bridgman correction diagram to obtain true stressstrain relation after necking. 8 M b) Briefly explain the mechanical properties of materials. 7 M (OR) 2. Write the salient points of stress-strain curves of the following materials with examples Ductile materials (a) Polymer materials (b) Brittle materials (c) 15 M 3. What is strain hardening? Explain the hardening mechanisms in metals. 15 M (OR) 4. a) Explain the mechanism of creep deformation. 8 M

b) Illustrate the statistical nature of fatigue failure.

5. Explain the working of Scanning Electron Microscope with next block diagram and mention its applications	
with neat block diagram and mention its applications.	5 M
(OR)	
6. a) Explain mechanical behaviour of metal matrix composites.	8 M
b) Justify the material characterization using optical microscope.	7 M
7. Write short note on the following	
(a) Hydrogen Embrittlement.	5 N 1
(b) Liquid metal Embrittlement. 1 (OR)	5 M
8. a) Explain in detail the Fracture analysis diagram.	8 M
b) What is transition temperature? Explain its signification in metallurgy.	nce 7 M